【摘要】针对传统理化方法分析水质污染情况耗时耗力等问题,提出一种基于鱼类异常行为识别的水质监测方法。以红色斑马鱼(red zebrafish)为研究对象,利用计算机视觉技术,首先对斑马鱼图像进行预处理,利用灰度共生矩阵获取鱼群纹理特征;然后通过Lucas-Kanade光流法计算鱼群的运动信息熵,并对获取的纹理特征和信息熵进行归一化处理;最后采用轻量化梯度促进机(LightGBM)对鱼类异常行为进行检测,与深度神经网络(DNN)和支持向量机(SVM)检测效果对比。结果显示:利用LightGBM对鱼类异常行为进行检测,准确率为98.5%,与其他模型对比分别提高0.5%和25.3%。研究表明,基于LightGBM模型的鱼类异常行为检测方法相比其他模型能更准确地识别鱼类非正常游动。该模型适用于自动水质监测。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中外医疗》 2015-07-06
《中外医疗》 2015-07-06
《阅江学刊》 2015-07-02
《重庆高教研究》 2015-06-30
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点